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Abstract—Sparse observations and coarse-resolution climate
models limit effective regional decision-making, underscoring the
need for robust downscaling. However, existing AI methods strug-
gle with generalization across variables and geographies and are
constrained by the quadratic complexity of Vision Transformer
(ViT) self-attention. We introduce ORBIT-2, a scalable foundation
model for global, hyper-resolution climate downscaling. ORBIT-
2 incorporates two key innovations: (1) Residual Slim ViT
(Reslim), a lightweight architecture with residual learning and
Bayesian regularization for efficient, robust prediction; and (2)
TILES, a tile-wise sequence scaling algorithm that reduces self-
attention complexity from quadratic to linear, enabling long-
sequence processing and massive parallelism. ORBIT-2 scales
to 10 billion parameters across 32,768 GPUs, achieving up to
1.8 ExaFLOPS sustained throughput and 92–98% strong scaling
efficiency. It supports downscaling to 0.9 km global resolution and
processes sequences up to 4.2 billion tokens. On 7 km resolution
benchmarks, ORBIT-2 achieves high accuracy with R2 scores in
range of 0.98–0.99 against observation data.

I. PROBLEM OVERVIEW

Many regions lack dense ground-based observational net-
works, hindering early warning systems, disaster risk mitiga-
tion, and climate adaptation planning. In such cases, global
climate models provide a crucial alternative, simulating at-
mospheric processes at planetary scale. However, their coarse
resolution limits the representation of fine-scale phenomena,
constraining accuracy at regional levels.

Downscaling bridges this gap by translating coarse resolu-
tion global climate model outputs into fine-scale outputs [1].
This process is critical across a wide range of sectors, in-
cluding agriculture [2], water resources [3], infrastructure
and urban planning [4], energy systems [5], and extreme
event forecasting [6]. Despite its importance, downscaling
remains both scientifically and computationally challenging. It
requires physically consistent predictions from massive, high-
dimensional spatiotemporal data while maintaining accuracy
across diverse regions. These challenges highlight the urgent
need for scalable, high-fidelity downscaling approaches to
enable effective climate services, disaster preparedness, and
policy planning.

Traditional downscaling methods fall into two main cate-
gories: dynamical [7], which uses nested physical models to
simulate fine-scale processes but is computationally intensive
and limited to regional domains; and statistical [8], [9], which
is computationally efficient but often lacks physical fidelity

and generalizability. More recently, artificial intelligence (AI)
has emerged as a powerful alternative, offering the poten-
tial for high-resolution predictions with significantly lower
inference costs [10], [11], [12]. Task-specific deep learning
models have been developed to learn mappings between
coarse and fine-resolution fields, typically falling into two
categories: non-generative models [13], which are efficient
and stable but may lack fine spatial detail, and generative
models, such as diffusion-based approaches [14], [15], [16],
which produce sharper outputs at the expense of much higher
computational and training costs. Despite promising results,
most task-specific models must be retrained for each variable,
resolution, or region and often struggle to generalize across
diverse, physically distinct climate variables [17].

To overcome the limitations of task-specific models, recent
efforts have introduced foundation models such as Prithvi [18]
and ClimateLearn [19], which employ multi-task Vision
Transformer (ViT)-based architectures to support downscaling
across variables and geographic regions. While these models
represent an important step forward, they remain constrained
by resolution limits, computational cost, and model scalability.

A primary bottleneck is the computational complexity of
downscaling at high resolution. For instance, Prithvi achieves
12 km resolution over Europe but is restricted to 50–60 km
globally due to the quadratic scaling of ViT self-attention [20].
ViTs divide spatial data into patches, treating each patch as a
token. As resolution increases, the number of tokens grows,
and self-attention computes pairwise interactions among all
tokens, resulting in quadratic growth in memory and compute
demands. Unlike Natural Language Processing (NLP) models,
which operate on one-dimensional text sequences and scale to
over one million tokens [21], ViTs handle high-dimensional
spatial inputs with complex dependencies across multiple axes,
making long-sequence scaling significantly more computation-
ally intensive. As a result, the longest ViT sequence reported
to date is limited to 188k tokens [22]. This constraint directly
limits the maximum data resolution ViTs can process, as
sequence length scales proportionally with spatial resolution.

Another significant challenge is the uncertainty associ-
ated with multi-variable downscaling, as translating coarse-
resolution data to fine scales is a highly ill-posed inverse prob-
lem—one that becomes even more complex when multiple

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US
government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up,

irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE
will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan

(https://www.energy.gov/doe-public-access-plan).



Fig. 1: A generalized AI architecture diagram for state-of-the-art downscaling foundation models. Note that upsampling is used
for each channel prior to training blocks to reduce downscaling uncertainty.

climate variables are involved. Unlike super-resolution tasks
in computer vision [23], [24], where Red-Green-Blue channels
represent the same physical quantity, climate variables such as
temperature, humidity, and wind are governed by distinct yet
interrelated physical processes. This heterogeneity increases
the difficulty of learning consistent mappings and exacerbates
uncertainty in predictions. A common mitigation strategy is to
upsample coarse inputs prior to training [18], [19], which can
help reduce uncertainty but significantly increases sequence
length and, in turn, computational cost due to ViT’s quadratic
complexity. Moreover, upsampling introduces artifacts that can
propagate through the model, limiting its effectiveness.

One further limitation of existing downscaling founda-
tion models is their restricted model scale. For example,
Prithvi [18] is constrained to 1.4 billion parameters, primarily
due to the computational difficulty of scaling ViTs for high-
dimensional spatiotemporal data. A major advancement in this
area is the Oak Ridge Base AI foundation model for Earth
System Predictability (ORBIT) [17], which leverages hybrid
sharding and orthogonal parallelisms to scale ViTs to 113
billion parameters—five times larger than previous ViTs and
more than 100× larger than typical climate models. While OR-
BIT represents a major milestone in large-scale Earth system
modeling, it is specifically designed for temporal forecasting
and does not address spatial downscaling. In particular, it does
not resolve the ViT long-sequence bottleneck nor mitigate the
uncertainty associated with inverse downscaling problems.

To address the limitations of current foundation models in
high-resolution downscaling and to extend the ORBIT frame-
work, we introduce ORBIT-2, a scalable and computationally
efficient foundation model for climate downscaling. At its
core is a novel ViT architecture, Residual Slim ViT (Reslim),
specifically designed to bypass the high computational cost
associated with traditional upsampling-based approaches. Un-
like existing models that upsample inputs to mitigate un-
certainty—resulting in quadratic increases in memory and
computation—Reslim operates directly on adaptively com-
pressed spatial inputs, significantly reducing sequence length
while preserving critical information. It preserves accuracy and
reduces uncertainty through a lightweight residual learning
architecture, enabling efficient, low-overhead predictions. Ad-
ditionally, both training and inference are framed as a Bayesian
Estimation problem, incorporating a Markov Random Field

Total Variation prior to further constrain uncertainty and
improve spatial consistency.

Complementing this architecture is the Tile-Wise Sequence
Scaling Algorithm (TILES) that reduces ViT’s self-attention
complexity from quadratic to linear. It works by dividing
images into overlapping tiles, each processed in parallel on
separate Graphical Process Units (GPUs) using localized self-
attention. Each tile’s downscaled outputs are then seamlessly
merged to the full image. This strategy enables efficient and
scalable ViT-based downscaling, making ultra-high-resolution,
global-scale applications computationally feasible.

Leveraging the above innovations, ORBIT-2 sets a new
benchmark for AI-driven climate and weather downscaling
through four key breakthroughs:
• Efficient Reslim Architecture by operating directly on

compressed inputs, achieving over 660× speedup compared
to standard ViTs—without compromising accuracy.

• Longest ViT Sequence Length by scaling ViT sequence
lengths to unprecedented levels—up to 4.2 billion tokens for
a 9.5M parameter model and 671 million tokens for a 10B
model—surpassing the prior state-of-the-art of 188K tokens
by several orders of magnitude [22]. This eliminates the
long-standing sequence bottleneck, enabling global down-
scaling at resolutions as fine as 0.9 Kilometer (km).

• Scalable Large Model Training by training models with
up to 10 billion parameters across 32,768 GPUs, achieving
92–98% strong scaling efficiency and sustained throughput
of up to 1.8 ExaFLOPS.

• State-of-the-Art Accuracy achieving R2 scores of 0.98 for
precipitation and 0.99 for temperature at 7 km resolution
over the continental United States, setting a new standard
in high-fidelity downscaling performance.

II. BACKGROUND & STATE OF THE ART

Figure 1 illustrates the generalized architecture of leading
downscaling foundation models, including Prithvi [18] and
ClimateLearn [19]. The inputs consist of low-resolution data
with multiple atmospheric physical variables, normalized and
bias corrected, and each channel of the architecture reads data
for a distinct variable. To address downscaling inverse prob-
lem uncertainty, current models upsample coarse-resolution
inputs, either via interpolation [19] or convolution [18], before
training. This upsampling process is crucial, as it provides



Fig. 2: Reslim architecture is split into main and residual paths. No upsampling is used for the main path for ViT training,
leading to reduced computations. Residual path is used to condition prediction for reduced uncertainty.

a higher-resolution baseline for ViT training, mitigating un-
certainty from the inherently ill-posed nature of the multi-
variable downscaling problem, thereby improving accuracy
and uncertainty. Once upsampled, multi-channel inputs are
aggregated into a single-channel representation in feature
space, a step that can be performed using either cross-attention
mechanisms [25] or shallow convolutional layers [18], [19].
This aggregated representation is then trained by the ViT
training blocks, consisting of self-attention and feedforward
sub-layers. Finally, the trained output is projected back from
feature to image space for each individual physical variable.

This approach, however, introduces major challenges. Up-
sampling coarse-resolution input data before training increases
the sequence length, which increases in proportion to the
resolution increase, causing a quadratic increase in memory
and computations due to ViT’s self-attention mechanism.
This severely limits scalability and resolution, leaving the
long-sequence bottleneck unresolved. Prithvi, for example, is
limited to relatively coarse 50-60 km resolution for global
downscaling. To address this, prior work proposed both AI
architecture and High Performance Computing solutions.

Architecture solutions. To mitigate this, architectures like
Swin Transformer alleviate some of the computational burden
by introducing a hierarchical architecture with shifted window
attention [26], [27]. Instead of processing the entire image
at once, Swin Transformer partitions the image into smaller,
non-overlapping local windows, where self-attention is com-
puted independently within each window. To capture global
spatial dependencies, features learned from local windows
are aggregated into global features through an architecture
hierarchy. While this reduces computing complexity, Swin
Transformer has fundamental limitations and its layers of
architecture hierarchy must scale proportionally with higher
resolution, making it unsuitable for foundation models that
needs a single model to generalize across diverse datasets
with varying resolutions. Additionally, Swin Transformer’s
model size grows with the architecture hierarchy, shifting
the computational bottleneck from long-sequence processing
to large-model scaling. Consequently, Swin Transformer can
only scale up to 147K sequence length on standard 3-channel

images [27], far below what is needed for high-resolution,
multi-variable downscaling.

Other sparse attention architectures, such as MaxViT [28],
attempt to mitigate computational cost by sampling self-
attention computations. While this reduces complexity, it
comes at the expense of accuracy degradation when the sam-
pling ratio is too high, and it does not address the fundamental
quadratic complexity long-sequence problem.

Scaling algorithm solutions. Besides architecture innova-
tions, scaling algorithms, such as sequence parallelism [22],
[29], [30], has been proposed as an alternative strategy for
scaling ViT sequence length. It distributes image patch tokens
across GPUs for parallel computing, alleviating memory con-
straints. However, because self-attention requires each token
to interact with all other tokens from every other GPU,
sequence parallelism incurs substantial inter-GPU communi-
cation overhead and limits its scalability. More critically, it
does not resolve the fundamental quadratic complexity, which
causes computational costs to grow rapidly with increased
downscaling resolution. As a result, current ViT sequence
parallelisms are limited to a maximum of 188K token sequence
lengths [22], which remain insufficient for high-resolution
multi-variable downscaling.

It is also important to note that other commonly used paral-
lelisms—such as Fully Sharded Data Parallelism (FSDP) [31],
Tensor [32], pipeline [33], [34], [35] and hybrid sharded
parallelisms [17] are all designed to scale model sizes, rather
than long sequences of high-resolution and high-dimensional
spatial data. Consequently, none of the existing model paral-
lelisms fundamentally overcome the long-sequence bottleneck
in ViTs required for high-resolution global downscaling and
there is an urgent need to develop computing efficient and
massively parallel architecture and scaling algorithm.

III. INNOVATION REALIZED

A. Reslim: A Lightweight ViT Architecture for Scalable and
Uncertainty-Aware Downscaling

Unlike existing foundation models that rely on input up-
sampling to establish downscaling baselines, which leads
to increased sequence length and high computational cost,



ORBIT-2 introduces Residual Slim ViT (Reslim), a highly
efficient architecture that significantly reduces training time
and memory usage without compromising accuracy. The key
innovation of Reslim is its ability to operate directly on low-
resolution and adaptively compressed inputs, drastically reduc-
ing sequence length and computational burden. To counteract
the uncertainty typically introduced by bypassing upsampling
prior to ViT training, Reslim incorporates Bayesian estimation
and a residual convolutional learning path, enabling high
accuracy while maintaining efficiency. Its non-hierarchical
design further promotes generalization across datasets with
varying spatial resolutions, making it well-suited for scalable,
foundation-level Earth system modeling.

Main ViT Path. Figure 2 illustrates the Reslim architecture.
After tokenizing each low-resolution physical variable into
feature embeddings, the model proceeds along two architec-
tural paths: the main ViT and residual paths. Crucially, the
main path eliminates input upsampling, avoiding the sequence
length inflation and the quadratically increased computing cost
typical of ViT architectures.

First, the main path uses a cross-attention module to aggre-
gate multi-variable embeddings into a unified representation,
effectively collapsing the variable dimension. A learnable res-
olution embedding encodes the desired output resolution and
is added to the feature embedding, enabling resolution-aware
predictions—an essential capability for modeling resolution-
dependent Earth system behaviors. Next, an optional adaptive
spatial compression module, which will be explained further in
the next paragraph, reduces the sizes of the embeddings before
they are passed through ViT training blocks. When enabled,
this module compresses spatial features; otherwise, it acts as
an identity function. After processing, a decoder comprising
convolutional layers and linear projections reconstructs the
high-resolution output.

Adaptive Spatial Compression. Our objective is not only
to train directly on low-resolution inputs, but also to further
reduce token count and computational cost through compres-
sion. Reslim achieves this via an adaptive spatial compression
technique, inspired by adaptive image patching and mesh
refinement methods [36]. After aggregating multi-variable
features (purple block in Fig. 2), the model projects the
embedding back into image space and recursively partitions
it into spatial quadrants using a quad-tree structure. Partition-
ing continues for any quadrant where the estimated feature
density—computed via Canny edge detection—exceeds a pre-
defined threshold, terminating when a minimum patch size is
reached or below predefined threshold.

This approach enables finer-grained learning in feature-rich
regions through smaller patches, and coarse-grained learning
to smoother regions through larger patches, where less detail is
needed. Figure 3 illustrates an example image after variable-
aggregated features are mapped back to image space. Com-
pared to conventional uniform patching (Fig.3(a)), where each
grid represents an image patch token, the adaptive spatial com-
pression method (Fig.3(b)) reduces the number of patch tokens
by 7x in this figure example, significantly decreasing sequence
length and computing cost. After ViT training blocks, the
decompression module reconstructs the high-resolution output
from the compressed embeddings.

Fig. 3: Comparison with and without adaptive spatial com-
pression. Each yellow grid is an image patch.

Residual Learning. Reslim improves computational effi-
ciency by removing the upsampling step from the main ViT
path and training directly on low-resolution, spatially com-
pressed inputs. This design dramatically shortens sequence
lengths and reduces the quadratic computational cost typically
associated with ViT training. However, bypassing input up-
sampling introduces uncertainty, as conventional foundation
models rely on upsampled inputs to provide a coarse down-
scaling baseline. Reslim addresses this challenge through two
complementary innovations: residual convolutional learning
and a Bayesian estimation objective.

The residual convolutional path reintroduces upsampling
outside the main ViT path, using lightweight convolutional
layers with linear complexity. This path generates a high-
resolution approximation that is added to the ViT output before
loss computation. Such design yields two major benefits:
(1) it avoids the expensive quadratic cost of increasing the
ViT sequence length due to upsampling. The upsampling is
moved to the residual path, where convolutional layers have
linear complexity to input size and thereby upsampling in the
residual path incurs minimal computing cost. (2) it simplifies
the learning task by letting the ViT focus on predicting the
residual difference between the convolutional approximation
and the ground truth, rather than the full downscaling trans-
formation. This soft constraint stabilizes training, enhances
physical plausibility, and significantly reduces downscaling
uncertainty. As a result, Reslim achieves high downscaling
accuracy with significantly reduced computations compared
to conventional ViT.

Bayesian Training Loss. To further reduce uncertainty and
improve accuracy, Reslim reformulates its training as the
following Bayesian optimization problem with a Generalized
Markov Random Field Total Variation prior:

x̂← argmin
x̂
∥y − x̂∥2D +

K∑
k=1

N∑
i=1

∑
j∈C( ˆxk,i)

bi,j∥xk,i − xk,j∥ ,

where y is the high-resolution ground-truth, x̂ is the Reslim
prediction, and D is a latitude weighting matrix to account
for the decrease in longitudinal spacing toward the poles. K
is the number of output variables, and N is the total number
of pixels per variable. The neighborhood C( ˆxk,i) contains
all spatial neighbors of pixel ˆxk,i, which is the ith pixel for
the kth variable. bi,j is a spatial weighting factor inversely
proportional to the euclidean distance between each pixel pair
in the same neighborhood. In the above formulation, the first
term, ∥y− x̂∥2D, is the Bayesian forward data likelihood term
using a latitude-weighted mean squared error. The second term



Fig. 4: (a) TILES divides inputs and outputs into tiles, and
each GPU downscales a tile separately. (b) Overlapped halos
are added to each tile to address border artifacts among
neighboring tiles.

is a total variation spatial prior, promoting local smoothness
by penalizing irregularities within local neighborhoods, but
also preserving edges and discontinuities. This makes it well
suited for downscaling tasks that depend on spatial coherence
and structure preservation.

B. TILES: Tilewise Efficient Sequence Scaling Algorithm

While Reslim significantly reduces computation by oper-
ating on low-resolution and compressed inputs, it does not
resolve the inherent quadratic complexity of self-attention. As
resolution increases, this limitation becomes a bottleneck. To
address this, we introduce the Tilewise Efficient Sequence
Scaling Algorithm (TILES), a scalable sequence processing
strategy that reduces attention complexity from quadratic to
linear and enables efficient parallelization across GPUs.

TILES is motivated by the spatial locality property of down-
scaling, where the downscaling for each high-resolution pixel
is primarily influenced by spatially nearby coarse-resolution
inputs. This “point spread” effect, well studied in the remote
sensing literature [37], [38], [39], implies that long-range
pixel correlations can be safely ignored without affecting
downscaling accuracy. For example, neighboring pixels such
as the green and yellow ones in Fig. 4(a) have high mutual
influence, while distant pairs (e.g., green and blue) contribute
minimally or no influence to each other’s predictions.

Leveraging this locality, TILES partitions each input and
downscaling output into spatial tiles, assigning each tile to
a separate GPU. Each GPU then performs downscaling sepa-
rately for its assigned tile, and self-attention is restricted within
each tile, preserving local context while ignoring long-range
dependencies across tiles. This tilewise downscaling reduces
self-attention complexity from quadratic to linear. More specif-
ically, the computation complexity is O(N

2

T ), where N is the
number of image patch tokens and T is the number of tiles.
For fixed-size tiles, T increases proportionally with N , making
the overall complexity linear.

However, strict tiling introduces border artifacts, as pixels
near the border of each tile lack context from neighboring
tiles. To mitigate this, TILES introduces halo padding, where
each tile is padded with a fixed-width halo (shown in gray
in Fig.4(b)) that overlaps adjacent tiles. For instance, the red
region in Fig.4(a) is shared between Tile 1’s halo and Tile

Fig. 5: Orthogonal levels of parallelisms mapped to supercom-
puter at cluster, node, and device levels.

2’s core region both shaded in red in Fig.4(b). This overlap
restores spatial continuity across tile boundaries, ensuring that
border pixels—such as the yellow pixel—receive complete
local context. Note that the halo width is determined empiri-
cally. Larger halos improve accuracy but increase computation,
while smaller halos reduce cost but risk accuracy loss.

After each GPU independently downsamples its tile, the
halo regions are discarded, and the non-padded tile outputs
are stitched together to form the final high-resolution output.
Since each GPU processes a different tile, leading to different
gradient and model parameter update, gradients from all GPUs
are averaged to maintain the model consistency across GPUs
and global optimization. This inter-GPU communications,
however, have minimal communication frequency and over-
head as it takes place only once per data batch.

C. Orthogonal Parallelisms
TILES efficiently scales sequence length, enabling high-

resolution downscaling. However, it does not address model
size scaling. To support both large foundation models and
global high-resolution downscaling, TILES must be integrated
with complementary model-parallel strategies. Since TILES
and model parallelism target orthogonal goals, with TILES
for sequence length and model parallelisms for model size,
they can be combined seamlessly. This results in a unified
framework incorporating four distinct parallelism strategies:
• TILES sequence parallelism: Distributes long sequence

lengths for ViTs for tilewise approximation as discussed
before. Requires least communication overhead.

• Fully Sharded Data Parallelism (FSDP) [31]: shards both
data and model parameters across GPUs, but requires tem-
porarily gathering the full model during forward and back-
ward passes. Requires moderate communication overhead.

• Tensor Model Parallelism [32]: Only shards model pa-
rameters and keep parameters sharded throughout training.
Requires most communication overhead.

• Distributed Data Parallelism (DDP) [40]: distributes only the
training data without sharding model parameters. Requires
least communication overhead.
Fig. 5 shows how these orthogonal parallelisms map to a

supercomputer hardware. Two adjacent nodes form a TILES
sequence parallel group (green dashed boxes), responsible for



Pretraining

Dataset name Region Resolution (km) Input
Vars

Output
Vars Sample Size (in/out) # Sample

Pairs
Size
(GB)

ERA5→ERA5 Global 622→ 156 23 3 [32, 64, 23]→ [128, 256, 3] 367,920 200
ERA5→ERA5 Global 112→ 28 23 3 [180, 360, 23]→ [720, 1440, 3] 367,920 6,328
PRISM→ PRISM US 16→ 4 7 3 [180, 360, 7]→ [720, 1440, 3] 14,235 189
DAYMET→DAYMET US 16→ 4 7 3 [180, 360, 7]→ [720, 1440, 3] 14,946 200

Fine-Tuning
[ERA5, DAYMET]→DAYMET US 28→ 7 23 3 [120, 240, 23]→ [480, 960, 3] 14,946 113

Model Inference Evaluation
ERA5→ IMERG Global 28→ 7 23 3 [720, 1440, 23]→ [2880, 5760, 3] 1,488 132

TABLE I: Datasets used for pretraining, fine-tuning, and inference. Each entry specifies the downscaling resolution, input/output
variable counts, sample dimensions, number of training samples, and total storage size.

scaling sequence lengths. Multiple sequence parallel groups
form a DDP group, distributing data batches across the system.

Within each sequence parallel group, GPUs participate in
both tensor model and FSDP parallelisms for model scaling.
Tensor model parallelism operates within a node, leveraging its
low-latency interconnect to mitigate communication overhead
for hidden dimension partitioning. FSDP (red dashed boxes)
spans GPUs across neighboring nodes within the same TILES
group, enabling parameter and data sharding.

Once all parallelisms are established, each GPU receives
a subset of the model and data that can be optimized with
Flash Attention [41] to reduce memory use and cache misses,
as detailed in the next subsection. Within each GPU, stream-
ing multiprocessors (SMs) are mapped to Flash Attention
cache blocks, executing vector operations in parallel within
each block. Meanwhile, CPUs asynchronously load data and
construct quad-trees to track the spatial layout of adaptively
compressed patches described in Fig. 3.

Note that this multi-level strategy aligns the parallelism hier-
archy with the hardware architecture to optimize performance.
Neither DDP nor TILES sequence parallelisms requires fre-
quent communication, and are therefore mapped to cluster
nodes with slower network communication. Tensor and FSDP
model parallelisms requires more frequent communication,
and are therefore mapped to GPUs within the same node
and across neighboring nodes to utilize their faster in-node
and neighboring-node network communications. The Flash
Attention require the most frequent communication and are
therefore mapped to SMs within the same GPU, which has
the fastest network through shared L2 cache.

D. Optimizations

To further boost performance, we applied these optimiza-
tions:

Hybrid-OP Parallelism. We adopt the Hybrid-OP optimiza-
tion technique from ORBIT [17], which leverages the mathe-
matical structure of matrix chain multiplication to shard model
parameters in alternating row and column dimensions. This
optimization combines tensor model parallelism with FSDP,
achieving superior scalability with reduced communication
overhead and frequency compared to without Hybrid-OP.

Flash Attention. To accelerate self-attention computation,
we use Flash Attention [41], which applies a cache-blocking
technique to minimize memory access to GPU global memory.
By maximizing data reuse from high-bandwidth on-chip cache,

Flash Attention significantly improves compute throughput
through higher cache hit rates and faster memory access.

Mixed Precision and Layer Wrapping. We further utilize
BFLOAT16 mixed-precision to speed up training while reduc-
ing memory usage. To address numerical instability—where
gradients with extreme magnitudes may underflow or overflow
in BFLOAT16—we apply PyTorch’s dynamic gradient scal-
ing [42]. This technique automatically rescales gradients into
a representable range and reverses the scaling during parameter
updates, ensuring numerical stability.

To further reduce communication cost, we apply FSDP in a
layer-wise fashion [17]. Instead of sharding all model layers in
a single instance, parameters are sharded one layer at a time.
This reduces synchronization overhead and memory use.

IV. HOW PERFORMANCE WAS MEASURED

Model Configuration. All experiments in Sec. V use four
model configurations: 9.5M (256-dim embedding, 6 layers, 4
heads), 126M (1024-dim, 8 layers, 16 heads), 1B (3072-dim,
8 layers, 24 heads), and 10B (8192-dim, 11 layers, 32 heads)
parameters.
System Details. Experiments were conducted on the Frontier
supercomputer at Oak Ridge National Laboratory. Each node
consists of one 64-core AMD EPYC CPU and 8 GPUs (64 GB
each), organized into 4 MI250X cards with two GPUs per card.
GPUs on the same card communicate via Infinity Fabric CPU-
GPU, while all four MI250X cards are connected via 50 GB/s
GPU-GPU Infinity Fabric. Nodes are interconnected using 100
GB/s Slingshot-11. The software stack includes PyTorch v2.6,
ROCm v6.2.4, and libfabric v1.22.
Datasets. Table I summarizes the datasets used for pretraining,
fine-tuning, and inference. Our model is trained on paired
input→ output datasets designed to achieve 4X spatial re-
finement. For pretraining at global scale, we use the ERA5
reanalysis dataset [43] (1980–2020), employing two sets of
resolution pairs: 622 km→ 156 km and 112 km→ 28 km.
The data are split into 38 years for training, 2 years for vali-
dation, and 1 year for testing. The ERA5 dataset includes 23
variables: 5 static fields, 12 atmospheric variables (humidity,
wind speed, and temperature at 200, 500, and 850 hPa), and 6
surface variables. For United States (US)-focused pretraining,
we utilize the PRISM and DAYMET observation datasets
(1980–2022) [44], [45], performing 4X downscaling from 16
km to 4 km.

Fine-tuning is performed over the US by using both ERA5
and DAYMET at 28 km as inputs and 7 km DAYMET



(a) Reslim Architecture Speedup Comparison with ViT
Arch Model Size Resolution (km) Seq. Length Compression Tiles Time/sample (s) Speedup PSNR SSIM
ViT 9.5M 622→156 24,576 1× 1 7.3e-4 1 35.0 0.94
Reslim 9.5M 622→156 24,576 1× 1 1.1e-6 660 36.7 0.96
ViT 9.5M 112→28 777,660 1x 1 OOM NA NA NA
Reslim 9.5M 112→28 777,660 1× 1 1.2e-3 NA 37.6 0.96

(b) Adaptive Compression & Tiling Speedup Comparison with Reslim Baseline
Reslim 9.5M 112→28 777,660 8× 1 3.6e-4 3.3 37.7 0.96
Reslim 9.5M 112→28 777,660 16× 1 1.8e-4 6.6 37.8 0.96
Reslim 9.5M 112→28 777,660 32× 1 1.7e-4 7.1 37.9 0.96
Reslim 9.5M 112→28 777,660 1× 4 8.0e-4 1.5 37.7 0.96
Reslim 9.5M 112→28 777,660 1× 16 6.3e-4 1.9 37.7 0.96
Reslim 9.5M 112→28 777,660 1× 36 7.4e-4 1.6 37.7 0.96

TABLE II: (a) Computing performance comparison between ViT and Reslim at 128 GPUs. For 622→156 km downscaling,
Reslim achieves a 660× speedup over conventional ViT while maintaining accuracy. (b) Illustrates Reslim’s performance gains
at varying adaptive compression rates and tile counts, relative to a Reslim baseline without compression or tiling.

Architecture Model Size Compression Tiles GPUs Max Seq. Length Output Size Global Resolution (km)
ViT 9.5M 1× 1 8 25K [128, 256, 18] 156
ViT 10B 1× 1 8 OOM — —
Reslim 9.5M 1× 1 8 298M [5760, 11520, 18] 3.5
Reslim 9.5M 1× 1 32 466M [7200, 14400, 18] 2.7
Reslim 9.5M 4× 16 8 1.1B [11520, 23040, 18] 1.7
Reslim 9.5M 4× 16 128 4.2B [21600, 43200, 18] 0.9
Reslim 10B 1× 1 8 18M [1440, 2880, 18] 14
Reslim 10B 4× 16 8 74M [2880, 5760, 18] 6.9
Reslim 10B 4× 16 512 671M [8640, 17280, 18] 2.3

TABLE III: Maximum sequence length scaling across architectures, model sizes, compression, tiles and GPU count.

as output ground truth. The fine-tuning dataset is split into
training, validation, and testing in the same way as pretraining.

After fine-tuning, we apply the trained model for inference
to downscale global ERA5 precipitation data from 28 km to
7 km resolution, and evaluate against IMERG observation
dataset [46], a NASA product for global precipitation ob-
servation. We compare the model’s daily aggregated 7 km
predictions with IMERG globally. Since inference does not
include bias correction—and both ERA5 and IMERG contain
uncertainties—perfect alignment is not expected.
Performance Metrics. The total number of floating point
operations (FLOPs) of the systems was collected via the
Microsoft Deepspeed Profiler [47] and we only gathered the
FLOPs on GPUs. Only the mixed-precision BFLOAT16 results
were reported. We measured following performance:
• Time-to-solutions. Defined as the average wall-clock time to

downscale each hourly sample. Equivalent to epoch runtime
divided by the total number of sample count. We reported
numbers for both 622→ 156 and 112→ 28 km resolutions.

• Strong scaling efficiency. Measured speedup per epoch rela-
tive to GPU count, with the runtime at 512 GPUs (64 nodes)
as the 100% baseline.

• Sustained throughput. It is defined as the total FLOPs to
downscale each data point, divided by the average wall
clock time in seconds. The performance includes the whole
application with IO. Reported in ExaFLOPS.

• Accuracy. We use both scientific and image-based metrics
for downscaling accuracy against observations: Coefficient
of determination (R2), Root-Mean-Square-Error (RMSE),
RMSE for Quantiles, Structural Similarity Index (SSIM),
and Peak-Signal-Noise-Ratio (PSNR). Higher R2, SSIM,
and PSNR scores represent higher fidelity downscaling,
while lower RMSE represents higher fidelity downscaling.

Dataset, Source Code and Model Checkpoint Release. We
will publicly release the datasets, source code and trained
model checkpoints soon and update this manuscript.

V. PERFORMANCE RESULTS

A. Speedup Ablation Studies

Table II(a) presents an ablation study comparing the per-
formance of ViT and Reslim architectures, using models
with 9.5M parameters and at 128 GPUs. Two ERA5→ERA5
downscaling tasks were used: 622→156 km and 112→28 km
(details in Table I). Each hourly output sample is tokenized
into image patches. For the 622→156 km task, outputs of
shape [128, 256, 3] and 2×2 patch size yield sequence
length of 24,576; for 112→28 km, output size [720, 1440,
3] produces 777,660 tokens. No adaptive spatial compression
or tiling was applied in this comparison.

The seventh column of Table II(a) reports the average
time to downscale each hourly sample. The eighth column
shows the speedup from Reslim relative to the ViT baseline.
Notably, the Reslim architecture avoids expensive upsampling
operations by operating directly on low-resolution inputs,
resulting in significant computational savings. For the smaller
622→156 km task, Reslim achieves a 660× speedup over ViT
at the same number of GPUs while maintaining comparable
accuracy, as measured by PSNR and SSIM. This demonstrates
the effectiveness of Reslim’s residual learning design and
Bayesian training loss in maintaining predictive accuracy
while reducing computational cost. For the larger 112→28
km resolution task, the ViT model fails due to out-of-memory
(OOM) errors. Consequently, a direct speedup comparison is
not available, although Reslim completes the task efficiently
and maintains high accuracy.



Fig. 6: (a) TILES sequence scaling algorithm speedup across GPUs, compared to an 8-GPU baseline that does not utilize
tiling. (b) Strong scaling efficiencies up to 4096 nodes (32,768 GPUs) for various model sizes, maintaining a strong scaling
efficiencies of 92-98% at 4096 nodes.

(a) Evaluation metrics for minimum temperature (Kelvin)
Model Size R2 RMSE RMSE σ1 > 68% RMSE σ2 > 95% RMSE σ3 > 99.7% SSIM PSNR

9.5M 0.991 3.812 4.652 9.704 15.497 0.958 29.02
126M 0.999 0.505 0.630 1.025 1.491 0.987 45.96

(b) Evaluation metrics for total precipitation (millimeter/day)
9.5M 0.975 0.146 0.166 0.344 0.449 0.931 29.03
126M 0.979 0.135 0.154 0.296 0.365 0.932 30.20

TABLE IV: Comparison of downscaling accuracy for temperature and precipitation over the U.S. using models with 9.5M and
126M parameters. Results highlight performance gains from increased model capacity.

Table II(b) explores further speedup gains from adaptive
spatial compression and sequence tiling, compared to the
Reslim baseline (Table II(a), row 5), all using 128 GPUs.
Adaptive compression with a 32× sequence length reduction
yields up to a 7.1× speedup with no loss in PSNR or SSIM.
Further compression yields diminishing returns due to quad-
tree overhead. Tiling provides up to 1.9× with 16 tiles per
sample. Further tiling introduces excessive halo padding over-
head and degrades computing performance. Accuracy remains
stable across all settings.

B. Maximal Sequence Length Scaling

Table III presents sequence length and resolution scaling
performance of various model architectures and strategies,
demonstrating how the combination of spatial compression,
tiling, and the Reslim architecture enables extreme sequence
lengths. We achieve sequence lengths of up to 4.2 billion
tokens (global downscaling resolution of 0.9 km) for a 9.5M
parameter model and up to 671 million tokens (global resolu-
tion 2.3 km) for a 10B parameter model. These results surpass
the state-of-the-art in sequence scaling by more than 22,000×,
compared to state-of-the-art sequence parallelism of 188K
tokens [22], and the Swin Transformer at 147K tokens [27].

All experiments utilize 23 input variables (12 atmospheric,
6 surface, and 5 static) and produce 18 output variables
(excluding static inputs). Using a standard ViT with 9.5M
parameters, the maximum sequence length is limited to 25K
tokens (coarse 156 km global resolution) when using 8 GPUs.
Scaling this ViT model to 10B parameters results in an out-of-
memory (OOM) error, making global downscaling infeasible.

In contrast, Reslim demonstrates significantly better scaling.
With just 8 GPUs, a 9.5M parameter Reslim model scales to
298M tokens at a 3.5 km global resolution. This corresponds
to an output tensor of shape [5760, 4520, 18], assuming a 2×2
image patch size. Increasing the number of GPUs to 32, we
achieve 466M tokens at 2.7 km resolution.

When combining Reslim with both spatial tiling (16 tiles per
sample) and adaptive spatial compression (4x) techniques, sub-
stantial improvements are obtained. With these methods, the
model achieves 1.1B tokens on only 8 GPUs, corresponding
to downscaled output of size [11520, 23040, 18]. This result
is made possible through several key compression techniques:

• Channel aggregation in Reslim (see Fig. 2) reduces the
sequence length by 18× by aggregating channels.

• Spatial tiling divides the sample into 16 tiles, reducing the
sequence length per GPU by 16×.

• Adaptive spatial compression reduces sequence by 4×.
• Reslim processes directly on low-resolution input, reducing

the effective sequence length by 60×.

Combining all four, the effective per-GPU sequence length
becomes only 17,280 tokens, despite the global output repre-
senting 1.1 billion tokens. Finally, by scaling to 128 GPUs,
we achieve our largest configuration: 4.2 billion tokens at 0.9
km resolution.

For the 10B parameter model, Reslim still scales efficiently.
Without compression or tiling, it reaches 18 million tokens.
With 4× compression, 16 tiles, and 512 GPUs, the model
handles 671 million tokens at 2.3 km resolution.



(a) Power spectrum of minimum temperature downscal-
ing

Observation: 7km Daymet Downscaled: 7km ORBIT-2

(b) Daily total precipitation vs. observation

Fig. 7: (a) Power spectra of downscaled minimum temperature using 9.5M and 126M parameter models, showing improved
high-frequency fidelity with increased model capacity. (b) Daily total precipitation over the U.S. on January 1, 2020: (Left) 7
km DAYMET ground truth, and (Right) 7 km ORBIT-2 downscaling using the 126M model. ORBIT-2 accurately reconstructs
fine-scale precipitation structures.

C. TILES Sequence Scaling Speedup
Fig. 6(a) demonstrates the scalability of the TILES al-

gorithm. With 16 tiles per sample, TILES achieves a 1.9×
speedup over the non-tiling baseline, both at 8 GPUs, using
a 9.5M parameter model on the ERA5→ERA5 112→28 km
downscaling task. As GPU count increases, speedup scales
nearly linearly, reaching 515× at 2048 GPUs relative to the
8-GPU baseline without tiling. This highlights the scalability
and minimal overhead of the TILES approach for distributed
training.

D. Strong Scaling Efficiencies & Throughput
Fig. 6(b) presents strong scaling performance across model

sizes (9.5M to 10B parameters) using the same dataset as in
Fig. 6(a). Experiments were conducted at scales of 64, 256,
1024 and 4096 nodes with 8 GPUs for each node, employing
all four forms of orthogonal parallelism (see Sec. III). Each
point in the figure reports the average runtime in second per
hourly sample with a data label for corresponding strong scal-
ing efficiency, relative to each model’s baseline performance
at 64 nodes (512 GPUs).

All model sizes maintain high strong scaling efficiencies
between 92–98%. The smallest model (9.5M) underutilizes
hardware at large scales due to insufficient computing with
small model, with 2.5e-6 seconds per sample and a sustained
computing throughput at 363 PetaFLOPS at 4096 nodes
(32,768 GPUs). In contrast, larger models saturate compute
resources: the 126M, 1B, and 10B models reach sustained
throughputs of 1.3, 1.5, and 1.8 ExaFLOPS, respectively, at
4096 nodes. These results demonstrate the strong scalability
of Reslim and the effectiveness of orthogonal parallelism for
exascale climate downscaling.

E. Fine-Tuning & Inference
US Regional Fine-Tuning. Following pretraining on the

datasets in Table I, we fine-tune ORBIT-2 models with
9.5M and 126M parameters on two tasks: (1) US-specific
downscaling of ERA5 and DAYMET data from 28 km to 7

km, evaluated against 7 km DAYMET observations for both
daily total precipitation and minimum temperature; and (2)
global downscaling of 28 km ERA5 precipitation to 7 km,
evaluated against IMERG observations. These tasks evaluate
both regional accuracy and global generalization. The current
fine-tuning results are limited to 9.5M and 126M models.
We will update the manuscript soon to also report fine-tuning
results for the 1B and 10B parameter models.

Table IV(a) summarizes results for daily minimum temper-
ature downscaling. Both 9.5M and 126M models accurately
reconstruct high-resolution temperature at 7 km resolution and
are capable of capturing extremes, with the larger 126M model
consistently outperforming the smaller 9.5M model across all
metrics. Notably, the 126M model achieves an R2 of 0.999 and
SSIM of 0.987, establishing a new benchmark for temperature
downscaling at 7 km resolution.

Fig. 7(a) provides corresponding spectral analysis for the
downscaling results in Table IV(a) by comparing the spatial
power spectra of the two model sizes. The 126M model
accurately captures high-frequency content, closely matching
the high frequency spectral characteristics of the DAYMET
observation ground truth. In contrast, the 9.5M model deviates
from the ground truth at high frequencies. This demonstrates
the larger model’s ability to resolve fine-scale spatial variabil-
ity, emphasizing the value of increased model capacity for
high-fidelity climate downscaling.

Table IV(b) presents downscaling results for daily total
precipitation—one of the most challenging variables due to
its high spatial variability and localized extremes. ORBIT-
2 demonstrates strong performance, closely matching ob-
servations when downscaling to 7 km resolution. Fig. 7(b)
provides a visual comparison of 7 km DAYMET ground truth
and ORBIT-2’s 7 km prediction. Since ERA5 (a reanalysis
product) and DAYMET (observations) have different statistical
properties, we combine them at 28 km resolution as the
input for downscaling to 7 km. The 126M model consistently
outperforms the 9.5M model across all evaluation metrics,
achieving an R2 of 0.979 and an overall RMSE of 0.135



Fig. 8: Playable animation comparing daily total precipitation at global scale for July 2020. (Left) Coarse-resolution ERA5
28km input; (Middle) IMERG 7km ground truth; (Right) ORBIT-2 downscaled prediction at 7 km. The animation demonstrates
ORBIT-2’s ability to recover fine-scale features from coarse inputs. For optimal playback, please view in Adobe Acrobat.

mm/day. Notably, the large model also accurately captures
extreme precipitation events, with RMSE values of 0.365
mm/day at the 99.7th percentile and 0.525 mm/day at the
99.99th percentile. All RMSE values for precipitation are
computed in log-transformed space using log(x+1), where x
denotes daily precipitation in millimeters.

Global Model Inference. Fig. 8 shows an animation of
global daily precipitation for July 2020, comparing ORBIT-
2 predictions (downscaling from 28 km to 7 km) against 7
km IMERG observations. The model was applied directly
for global inference—without any fine-tuning or bias correc-
tion—to evaluate generalization. Despite challenges in down-
scaling ERA5 reanalysis data to satellite IMERG data due to
their data source inconsistency, ORBIT-2 demonstrates strong
generalization capability, achieving R2 = 0.90, SSIM = 0.96,
PSNR = 41.8, and RMSE = 0.34 mm/day (in log(x+1) space).
These results underscore ORBIT-2’s robustness, effectively
extending regional training to global inference.

VI. IMPLICATION

ORBIT-2 represents a significant leap forward in the con-
vergence of artificial intelligence, HPC, and Earth system
science. By overcoming fundamental challenges in scalability,
resolution, and uncertainty, ORBIT-2 sets a new standard for
climate and earth system foundation models.

Impact on HPC. ORBIT-2 pushes the frontiers of HPC
by enabling ViTs at unprecedented scale. Through its novel
TILES algorithm, ORBIT-2 reduces the self-attention com-
plexity from quadratic to linear, allowing for efficient process-
ing of ultra-long sequences. Complementing this, the Reslim
architecture introduces a lightweight, uncertainty-aware learn-
ing framework that leverages residual learning and Bayesian
regularization to improve efficiency and training robustness.

Crucially, ORBIT-2 achieves breakthrough scalability in
ViT training, scaling up to 10 billion parameters model
size across 32,768 GPUs, and scale up to 4.2 billion token

sequence length, several magnitudes longer than the state-
of-the-art long sequence implementation that scales to 188K
tokens. It sustains up to 1.8 ExaFLOPs of performance with
92–98% strong scaling efficiency at 32,768 GPUs, setting a
new benchmark for exascale AI workloads. ORBIT-2 serves
as a blueprint for next-generation exascale foundation models,
enabling transformative applications across domains including
genomics, fluid dynamics, astrophysics, and Earth system
modeling.

Impact on Earth System Science. For Earth system mod-
eling, ORBIT-2 enables hyper-resolution, global-scale down-
scaling with state-of-the-art accuracy and efficiency. Evaluated
against observational data, it achieves a coefficient of deter-
mination (R2) of 0.999 for temperature and 0.979 for precipi-
tation at 7 km resolution across the continental United States,
closely matching ground-truth observation records. Critically,
ORBIT-2 generalizes across both variables and geographic
regions using a single unified foundation model—an essential
capability for improving climate projection fidelity, detecting
localized extremes, and guiding mitigation and adaptation
strategies. This makes ORBIT-2 a valuable tool for researchers,
policy-makers, and emergency planners worldwide.
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